extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×Q8)⋊1C23 = C2×D7×SD16 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | | (C7xQ8):1C2^3 | 448,1211 |
(C7×Q8)⋊2C23 = C2×D56⋊C2 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | | (C7xQ8):2C2^3 | 448,1212 |
(C7×Q8)⋊3C23 = D7×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 56 | 8+ | (C7xQ8):3C2^3 | 448,1225 |
(C7×Q8)⋊4C23 = C22×Q8⋊D7 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8):4C2^3 | 448,1260 |
(C7×Q8)⋊5C23 = C2×D4⋊D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | | (C7xQ8):5C2^3 | 448,1273 |
(C7×Q8)⋊6C23 = C22×Q8×D7 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8):6C2^3 | 448,1372 |
(C7×Q8)⋊7C23 = C22×Q8⋊2D7 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8):7C2^3 | 448,1373 |
(C7×Q8)⋊8C23 = C2×D7×C4○D4 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | | (C7xQ8):8C2^3 | 448,1375 |
(C7×Q8)⋊9C23 = C2×D4⋊8D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | | (C7xQ8):9C2^3 | 448,1376 |
(C7×Q8)⋊10C23 = D7×2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 56 | 8+ | (C7xQ8):10C2^3 | 448,1379 |
(C7×Q8)⋊11C23 = SD16×C2×C14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8):11C2^3 | 448,1353 |
(C7×Q8)⋊12C23 = C14×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | | (C7xQ8):12C2^3 | 448,1356 |
(C7×Q8)⋊13C23 = C4○D4×C2×C14 | φ: trivial image | 224 | | (C7xQ8):13C2^3 | 448,1388 |
(C7×Q8)⋊14C23 = C14×2+ 1+4 | φ: trivial image | 112 | | (C7xQ8):14C2^3 | 448,1389 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×Q8).1C23 = C2×SD16⋊D7 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | | (C7xQ8).1C2^3 | 448,1213 |
(C7×Q8).2C23 = C2×SD16⋊3D7 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | | (C7xQ8).2C2^3 | 448,1214 |
(C7×Q8).3C23 = D28.29D4 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).3C2^3 | 448,1215 |
(C7×Q8).4C23 = C2×D7×Q16 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | | (C7xQ8).4C2^3 | 448,1216 |
(C7×Q8).5C23 = C2×Q16⋊D7 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | | (C7xQ8).5C2^3 | 448,1217 |
(C7×Q8).6C23 = C2×Q8.D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | | (C7xQ8).6C2^3 | 448,1218 |
(C7×Q8).7C23 = D28.30D4 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | 4 | (C7xQ8).7C2^3 | 448,1219 |
(C7×Q8).8C23 = D7×C4○D8 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).8C2^3 | 448,1220 |
(C7×Q8).9C23 = D8⋊10D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).9C2^3 | 448,1221 |
(C7×Q8).10C23 = D8⋊15D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 4+ | (C7xQ8).10C2^3 | 448,1222 |
(C7×Q8).11C23 = D8⋊11D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).11C2^3 | 448,1223 |
(C7×Q8).12C23 = D8.10D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | 4- | (C7xQ8).12C2^3 | 448,1224 |
(C7×Q8).13C23 = SD16⋊D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).13C2^3 | 448,1226 |
(C7×Q8).14C23 = D8⋊5D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).14C2^3 | 448,1227 |
(C7×Q8).15C23 = D8⋊6D14 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).15C2^3 | 448,1228 |
(C7×Q8).16C23 = D7×C8.C22 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).16C2^3 | 448,1229 |
(C7×Q8).17C23 = D56⋊C22 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).17C2^3 | 448,1230 |
(C7×Q8).18C23 = C56.C23 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).18C2^3 | 448,1231 |
(C7×Q8).19C23 = D28.44D4 | φ: C23/C2 → C22 ⊆ Out C7×Q8 | 224 | 8- | (C7xQ8).19C2^3 | 448,1232 |
(C7×Q8).20C23 = C2×C28.C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).20C2^3 | 448,1261 |
(C7×Q8).21C23 = C22×C7⋊Q16 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 448 | | (C7xQ8).21C2^3 | 448,1262 |
(C7×Q8).22C23 = C2×D4.8D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).22C2^3 | 448,1274 |
(C7×Q8).23C23 = C28.C24 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).23C2^3 | 448,1275 |
(C7×Q8).24C23 = C2×D4.9D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).24C2^3 | 448,1276 |
(C7×Q8).25C23 = D28.32C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).25C2^3 | 448,1288 |
(C7×Q8).26C23 = D28.33C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).26C2^3 | 448,1289 |
(C7×Q8).27C23 = D28.34C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).27C2^3 | 448,1290 |
(C7×Q8).28C23 = D28.35C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | 8- | (C7xQ8).28C2^3 | 448,1291 |
(C7×Q8).29C23 = C2×Q8.10D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).29C2^3 | 448,1374 |
(C7×Q8).30C23 = C2×D4.10D14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).30C2^3 | 448,1377 |
(C7×Q8).31C23 = C14.C25 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).31C2^3 | 448,1378 |
(C7×Q8).32C23 = D14.C24 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).32C2^3 | 448,1380 |
(C7×Q8).33C23 = D7×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8- | (C7xQ8).33C2^3 | 448,1381 |
(C7×Q8).34C23 = D28.39C23 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 8+ | (C7xQ8).34C2^3 | 448,1382 |
(C7×Q8).35C23 = Q16×C2×C14 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 448 | | (C7xQ8).35C2^3 | 448,1354 |
(C7×Q8).36C23 = C14×C4○D8 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).36C2^3 | 448,1355 |
(C7×Q8).37C23 = C14×C8.C22 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | | (C7xQ8).37C2^3 | 448,1357 |
(C7×Q8).38C23 = C7×D8⋊C22 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).38C2^3 | 448,1358 |
(C7×Q8).39C23 = C7×D4○D8 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).39C2^3 | 448,1359 |
(C7×Q8).40C23 = C7×D4○SD16 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 112 | 4 | (C7xQ8).40C2^3 | 448,1360 |
(C7×Q8).41C23 = C7×Q8○D8 | φ: C23/C22 → C2 ⊆ Out C7×Q8 | 224 | 4 | (C7xQ8).41C2^3 | 448,1361 |
(C7×Q8).42C23 = C14×2- 1+4 | φ: trivial image | 224 | | (C7xQ8).42C2^3 | 448,1390 |
(C7×Q8).43C23 = C7×C2.C25 | φ: trivial image | 112 | 4 | (C7xQ8).43C2^3 | 448,1391 |